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This paper is concerned with the semidiscrete approximation of hyperbolic equations 
in one-space dimension. A finiteditference approximation is used for the spatial derivat- 
ive, but the time derivative is retained to yield a system of ordinary-differential equa- 
tions. We compare fixed time step methods such as the leapfrog and fourth-order 
Runge-Kutta with variable time step ODE solvers such as Runge-Kutta-Fehlberg 
and the Adams method of Shampine. We are especially interested in the determination 
of the optimal time step for the fixed time step methods. A graphical method for this 
determination is described. We also test two predictor-corrector schemes, one based 
on the Milne corrector, the other based on an implicit Runge-Kutta formula. 

1. INTRODUCTION 

We are concerned with the application of a few of the standard methods for 
ordinary differential equations to the simple hyperbolic equations ut + U, = 0 or 
ut + UU, = g(x, t), and the shallow water equations given in Section 5. Our 
objective is to compare the computational efficiency of these schemes. We are 
mainly interested in the time discretization. We replace the spatial derivative u, , 
or &(z?)~ by a fourth-order finite difference using an equally spaced mesh. This 
yields a system of ordinary differential equations to which we apply the various 
methods. Thus we are using the well-known method of lines. This method has been 
used extensively [4, 8, 10, 13, 141 but we are not aware of comparisons with fixed 
time step methods which use an optimal time step. In some cases we use a fixed 
ratio At/Ax. To make the comparison we must therefore decide on the desired 
accuracy, then choose At and Ax to yield this accuracy at minimal cost [l]. We use 
a graphical method to find these optimal values. We compare the leapfrog scheme, 
a fourth-order Runge-Kutta, and two predictor-corrector schemes. The first is 

* This work was supported in part by the National Center for Atmospheric Research which 
is funded by the National Science Foundation. A brief summary of this work is given in the 
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based on the Mime corrector and the second on an implicit Runge-Kutta corrector 
[2]. We also use a variable step Runge-Kutta-Fehlberg ordinary-differential 
equation solver [5] and a variable order, variable step Adams method [6]. 

Our tests are limited to a few simple problems. Even if the tests were more 
extensive they could not define an optimal scheme. The solution may contain a 
shock, boundary layer, discontinuous material constants, or it may be defined on an 
irregular domain. A steady state solution may be desired, a very crude solution 
may be adequate, some global statistics such as the spectrum or long term averages 
may be desired rather than pointwise values. These factors can have a profound 
effect on the choice of a difference scheme. However, we feel that limited experi- 
ments such as this one can provide useful insight. 

Our results tend to favor the fixed time step leapfrog or Runge-Kutta schemes. 
However, the ODE solvers tend to be almost as effective, and this comparison 
depends on the problem and the desired error. The ODE solvers do not require 
the user to select the time step. The tests described here are limited to periodic 
boundary conditions. To use more realistic boundary conditions is certainly of 
interest, but would create a much more complex test. 

2. THE DIFFERENCE SCHEMES 

We first describe the schemes as they apply to ordinary-differential equations. 
We write the ordinary-differential equation in the form 

Y’ = f(Y9 t) 

and denote the approximation to y(t,J = y(ndt) by yn . Then the leapfrog scheme is 

Yn+1 = Yn-1 + WHY,, fn). (1) 

The Runge-Kutta version which we use is 

k, = Otj(y, + 0.5kl, t, + 0.5dt) 

k, = Atf(yn + 0.5k, , t, + 0.5dt) 

ke = &f(yn + k, , &+,I 

~n+l = in + (k, + 2k, + 2k, + U/6. 

The Milne corrector is based on 

(2) 

~n+l = in-1 + AU(yn-1 > tn-1) + 4f(vn 3 tn) +f(~n+l 3 t,+,W. (3) 
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The other corrector is based on the following implicit Runge-Kutta scheme. 

Yn+1/2 = (Yn + Y,,lW + 4f(Yn, Gz) -f(Yn+1 3 t,+m 

Y~+~ = yn + AWY, , L> + W.Y~+~/~ , tn+~i2) + f(~~+~ , L+JW 
(4) 

This scheme, which is implicit in yn+li2 and yn+l , has been applied to diffusion 
problems by Watanabe and Flood [3]. 

We use the following Adams predictor which has third-order accuracy. 

Y~+~ = yn + ot(23f(~, , f,) - 16f(j~-~, L) + 5f(~+~, ~~))/12. (5) 

These schemes are applied to the following hyperbolic equations 

24t + 24, = 0 (6) 

4 + Hu2>, = &, 0. (7) 

Periodic boundary conditions on the interval 0 < x < 2~ are used. Two different 
solutions are used. 

24(x, t) = sin(x - t) (8) 

u(x, t) = exp(0.5sin(x - t)). (9) 

In the case of Eq. (7), the function g(x, t) is chosen to yield the desired solution 
(8) or (9). Therefore, we know the exact solution in all our test cases. 

In order to apply the method of lines to Eqs. (6) and (7), the spatial derivatives 
must be approximated. We use an equally spaced mesh. 

xi = jAx = 2rrjlJ l,(j<J 

A fourth-order difference approximation is used for U, and (u% , namely, 

6,(u) = (uipl - 8z4el + 8~4+~ - 24+,)/(12Ax). 

This defines a system of ordinary differential equations which approximate (6) 
and (7) 

GWWj =.h@, t) 1 <j,CJ 

where for (6) 
h = -uL4j 

and for (7) 
f;: = -B&lw2)j + &T(Xj ) t). 

For a fixed ratio X = At/Ax, the schemes defined above are subject to a stability 
restriction. By making the substitution 

U,n = Anei2rmx, 
3 



134 JOHN GARY 

and imposing the restriction that A” should be bounded we obtain the stability 
restriction on the ratio h. These are 

1. Leapfrog: X < 0.73 
2. Runge-Kutta: h < 2.0 
3. Milne implicit: h < 1.26 
4. Implicit Runge-Kutta: unconditional stability, h < co. 

(Note that this applies to the corrector, as discussed below.) 
5. Adams predictor: h < 0.5. 

The condition for the Adams predictor was determined numerically using a 
rootfinder. The same result is obtained from the stability regions given in the book 
by Shampine and Gordon [6, p. 1361, although the numerical results must be divided 
by the maximum amplitude of the Fourier transform of the spatial difference. 

We also use a version of the Lax Wendroff scheme [12, p. 3021. For the equation 

this scheme is given by 

The stability condition here is X < 1. 

3. THE PREDICTOR-CORRECTOR METHODS 

This scheme was suggested by J. Klemp at NCAR. The Milne corrector iteration 
takes an approximate value for Y%+~ , and substitutes this value into the right-hand 
side of Eq. (3) to obtain a new approximation for yn+l . This is a multipstep scheme 
and requires the values of both yn and yn-l . In our experiments with Eqs. (6) and 
(7) we started the integration for the leapfrog and Mime schemes by using the 
exact solution for the required previous time levels. By using the Fourier transform 
of Eq. (10) we can show that this corrector iteration will converge provided 
h < 2.19. Therefore, the stability requirement (10) is more restrictive for the Milne 
corrector. 

We used three predictors. The first is the Lax-Wendroff of Eq. (ll), predicting 
from zP to r.P+l. The second is the Adams predictor, from zP2, P-l, and zP to 
ZP+~. The third is another version of the Adams predictor which predicts in two 
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steps. The first from z.P2, P-r, P to u n+1+1/2 to ZP+~. This predictor is based on the 
following Adams schemes for ordinary differential equations. 

yn+l12 = yn + dt(l7f(~, , tn) - clf(~+r, L) + 2f(~,-~, t,-&)/24 
h+l = yn+1/2 + N+V(Y,+,,, , ~+d - 33f(m, a + 5f(~+~, t,-,))/72. 

(12) 

The Lax-Wendroff is a dissipative scheme, at least for h < 1. Therefore it might 
make a good predictor provided h < 1. However it has only second-order accuracy. 
The Adams predictor (5) has third-order accuracy. However, it is stable only if 
A < 0.5. Since the Milne corrector is stable for h < 1.26, the Adams predictor 
would be used in an unstable region. Therefore we also tried the Adams predictor 
in the two step version (12) under the assumption that the effective reduction in dt 
would yield a more accurate predictor and avoid amplification of higher wave 
numbers due to a stronger instability in the predictor. We did not determine the 
stability condition for this predictor. The two step predictor does require fewer 
corrector iterations, but seems to be no more efficient than the one step predictor 
because of the additional predictor iteration. 

TABLE I 

Comparison of Predictore? 

Predictor Error 
CPU 
time NE 

Lax-Wendroff 4.5E - 2 S.OE - 3 202 97 
predictor 3.2E - 3 2.OE - 3 194 93 

8.7E - 3 1.OE - 3 251 121 
4.6E - 3 5.OE - 4 280 134 

Single step 1.2E - 2 5.OE - 3 193 97 
Adams predictor 6.OE - 3 2.OE - 3 222 111 

4.4E - 3 l.OE - 3 248 125 
4.5E - 3 5.OE - 4 292 147 

Double step 5.OE - 3 5.OE - 3 185 94 
Adams predictor 7.OE - 3 2.OE - 3 220 111 

5.3E - 3 l.OE - 3 246 124 
4.9E - 3 5.OE - 4 283 141 

D Used with the Mime corrector, J = 20, X = A&,/Ax = 1.13, for the nonlinear equation (7) 
with solution (9). Here E is the convergence tolerance used for the corrector iteration; NE the 
number of evaluations of the right side including the predictor; the CPU time is in milliseconds 
on the NCAR CDC 7600. 

In all cases we iterate the corrector until the absolute difference between succes- 
sive iterates is less than some preassigned E. The comparison of these predictors for 
the Milne corrector is shown in Table I. These results are for the nonlinear equation 
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(7) with the solution (9). The error is the maximum relative error over the mesh at 
t = 27~. The number of evaluations of the right side of the equation is given. A 
prediction using Lax-Wendroff is counted as a single evaluation. A double Adams 
predictor followed by a single Milne corrector requires three evaluations for a single 
time step. In all cases 20 mesh points (J = 20) are used. The total number of time 
steps is 30 with A = 1.13. We use this value of h because it is 10 % below the 
maximum permitted by stability. Note that X = u&l t/Ax where 

u m- - m:x I 4xf , WI. 

The average number of corrector iterations per time step at E = 2.OE - 3 is 2.1 
for the Lax-Wendroff predictor, 2.7 for single-step Adams, and 1.7 for double- 
step Adams. 

The implicit Runge-Kutta corrector (4) computes the yn+1,2 approximation 
using the predicted JJ~+~ . Then a corrected JJ%+~ is obtained from the second equa- 
tion of (4). This iteration will converge for the linear equation (6) provided h < 1.33. 
The implicit corrector is unconditionally stable, but the iteration is not. 

These predictors seem to give equivalent results within the variability one might 
expect from problem to problem. Note that the Lax-Wendroff predictor shows an 
increase in error going from E = 2.OE - 3 to E = l.OE - 3, which is especially 
serious. The larger error for the single Adams predictor at E = 5.OE - 3 is probably 
not too serious, since E can be somewhat below the desired error although this does 
increase the computational cost. We use the Lax-Wendroff predictor with the im- 
plicit Runge-Kutta scheme since it is compatible with the single step (U” to Un+r) 
nature of the Runge-Kutta, unlike the Adams predictor which requires previous 
time levels. We use the double step Adams predictor with the Milne corrector 
since it seems to be slightly superior to the other predictors. However, this com- 
parison is likely to be problem dependent. 

4. A GRAPHICAL DETERMINATION OF THE OPTIMAL MESH RATIO 

We wish to choose values of dx and d t which will yield a preassigned error with 
minimal computational effort. We assume the computational cost is 

C = K/AtAxd (13) 

where d is the dimension of the space (d = 1,2, or 3) and K is a constant depending 
on the problem and the difference scheme. We assume the error has the asymptotic 
representation 

e(At, Ax) = O(AtP) + (de) 
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for a fixed t and a fixed problem. For example, the leapfrog scheme with a fourth- 
order spatial difference has q = 4 and p = 2. Our objective is to achieve a preas- 
signed error E(A t, AX) = E at a minimal cost. We choose d t so that the asymptotic 
spatial and temporal errors are balanced, that is At = &~xQ/“. More exactly, we 
define 01 for the nonlinear problem (7) by 

a = A tu,/Axqlp 

where the normalizing factor u, is 

u, = rnyx 1 24(x, , 0) 1. 

We will further assume that the truncation error has the following form (u(x, t) 
is the exact solution and uin the solution of the difference scheme on the mesh 
(4 7 4&N. 

u(xj , tn) - uin = Ax%(x, , t, , a) + O(dx~+~). (14) 

Note that the function E(X, t, a) is independent of Ax. It is then possible to show the 
existence of an optimal value of a! which yields a given error E at minimal computa- 
tional cost [l]. This optimal value is independent of the preassigned error E. 

In this paper we determine by computational experiment the error 

rnax Tin = m:x ] U(Xj , t,) - Ujn I. (15) 

The error is computed for various values OL, and J, (1 < p < N, 1 v < M for 
integers N and M). The equation is integrated to a fixed value t = T (usually 
T = 2n, or one period). The value of Ax is fixed by J, , and then the value of At is 
fixed by 01, . 

Since T/At may not be an integer we have to change At on the last time-step. For 
the single step schemes (Lax-Wendroff or Runge-Kutta), we simply change the 
value of At in the last step. In the case of the leapfrog scheme, which is second order 
in time, we use quadratic interpolation to obtain a value P-l with t,+l = T, 
t w-1 - t, = t, - t,q . The value of U” is unchanged. For the other multistep 
schemes (Mime and implicit Rung+Kutta correctors) we use the Runge-Kutta 
for this last time step. This fails to provide a pure comparison of the difference 
schemes. However, the contribution to the error due to this last step seemed to be 
small and we prefer to run at a preassigned CY, . 

Thus we compute ~(01, , J,) at t = T. We choose 01, and J, so that the ratios 
CY.,+~/LY, and Jv+I/Jv are nearly constant. We display the results in the form of a 
contour plot of log,,(T) against ln(JV) and ln(a,) on the axes. The values J, must be 
integers and therefore the values ln(J,) are not equally spaced along the axis. In 
order to avoid modification of the contour plotting routine, we use cubic spline 
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interpolation to obtain values of T((Y, , JJ at equally spaced values of lx@,>. The 
contour plots are based on these interpolated values. From Eq. (13) for the cost 

log,,c = log,& - log& - d log,, h 

= log,, 12 + log,, a + (d + q/p) log,, J. 

Here A? is a new constant which differs from K. Therefore, the contour plot of the 
cost function is a set of straight lines. These are shown as dashed lines on the plots. 
The contour interval for the curves of constant error is log l/s = 0.5. Thus a 
spacing of two curves corresponds to a factor of 10 in the error. The contour inter- 
val for the logarithmic cost function is 0.25. 

5. THE COMPARISON OF THE SCHEMES 

In fig. 1 we show the curves for the implicit-Runge-Kutta corrector. There is no 
predictor involved here; this is an implicit scheme. This plot is for the linear 
equation (6) with solution (8). To avoid coding an implicit scheme we obtain the 
error from the Fourier transform of the difference equation. This should yield the 
same result as would be obtained by running the difference scheme. The optimum 
operating point is obtained where the cost and error curves are tangent. In Fig. 1, 
this optimum is approximately a,,rt = 2.2 or 2.3. Note that the error curves are 
parallel in this case which yields an c+ independent of the error E. The asymptotic 
form of the error dx’Q(x, t, a) in Eq. (14) predicts parallel error curves. 
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FIG. 1. Curves of constant error (logarithmic) for the implicit Runge-Kutta applied to (6) 
with solution (8). The horizontal axis is in J and the vertical in 01. 
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In Fig. 2 we show the curves for the leapfrog scheme with fourth-order spatial 
differences applied to the linear problem (6) with solution (8). Here we observe the 
cancellation between the spatial and temporal errors which has been noted by 
Swartz and Wendroff [lo]. It is unreasonable to use this problem to compare 
schemes, since this cancellation cannot be expected on more complex problems. 
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FIG. 2. Curves of constant error for the leapfrog applied to (6) with solution (8). 

We do not include the error curves for the Milne and implicit Runge-Kutta 
correctors since they are not tangent to the cost curves within the range of 01 for 
which the corrector iteration (or the corrector) is stable. Thus we should use the 
maximum value of 01 permitted by stability. We actually use 90 % of this value, 
since it is impossible to run at the limit in most nonlinear problems. 
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FIG. 3. Curves of constant error for Runge-Kutta applied to (7) with multiwave solution (9). 
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For the nonlinear problem (7) with the solution (9) the error curves are not 
parallel. In Fig. 3 the curves for the Runge-Kutta scheme are shown. The curves 
generally indicate that the maximum value of 01 should be used, so we set 01 = 1.8. 
Figure 4 displays the same case as Fig. 3 except the solution is the single wave 
number of Eq. (8) instead of the multiple wave numbers of Eq. (9). In both cases 
the Runge-Kutta scheme is applied to the nonlinear equation (7). The curves for 
the two cases are certainly different, although the optimal values of 01 are not much 
different in the two cases. We do not see any way to draw a general conclusion 
concerning the dependence of the optimal 01 on the problem. 
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.55 
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FIG. 4. Curves of constant error for Runge-Kutta applied to equation (7) with single wave 
solution (8). 

The straight dashed lines on these figures are lines of constant computational 
cost. They are spaced at a logarithmic interval of 0.25, therefore the cost factor 
between two adjacent lines is 10 o.25 = 1.8. Looking at Fig. 3 (Runge-Kutta, Eq. (7) 
solution (9)) we see that a change in 01 from 0.89 to approximately 1.4 along the 
constant error curve at 1O-3 would reduce the cost by a factor of 1.8 since these 
points lie on adjacent constant cost lines. 

In Tables II and III we compare the schemes. The previous discussion of Fig. 1-4 
concerned the choice of an optimal time-step for a fixed time-step scheme. Here we 
are concerned with a comparison between schemes including those based on an 
ODE solver. The value of c11 used in Table II is chosen to give optimal performance 
from contour plots of cost and error. In these tables J is the number of mesh points 
in one wavelength. The error is relative error. The ratio 01 is 01 = dtu,/dx’JIP as 
defined earlier. The convergence parameter for the corrector iteration is E and 
refers to an absolute rather than relative difference between successive iterates. 
The CPU time is measured in milliseconds on the CDC 7600 at NCAR. The number 
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TABLE II 

Comparison of Schemes for the Linear Equation (6) with Solution (9) 

Scheme 
Error CPU 

.I W) a c time NE 

Leapfrog 
Runge-Kutta 
Milne 
Imp. Runge-Kutta 
Imp. Runge-Kutta 
Lax-Wendroff 
Leapfrog 
Runge-Kutta 
Lax-Wendroff 
Leapfrog 
Runge-Kutta 
Lax-Wet&off 

20 2.1E - 3 0.7 
20 7.1E - 3 1.4 
20 2.4E - 3 1.13 
20 7.5E - 3 1.2 
20 4.3E - 3 1.2 
20 1.2E - 2 0.9 

8 4.7E - 2 0.7 
9 5.8E - 2 1.4 
8 5.6E - 2 0.9 

15 6.6E - 3 0.7 
21 5.9E - 3 1.4 
26 6.9E - 3 0.9 

- 103 92 
- 66 61 

5.OE - 4 89 82 
5.OE - 4 125 122 
l.OE - 4 214 198 

- 11 24 
- 7 16 
- 15 29 

2 10 
- 45 53 
- 71 61 
- 18 30 

a Here 01 = Atu,,,/AxQl*; c = convergence tolerance for corrector iteration; NE = number of 
evaluations of right side; the CPU time is in milliseconds on the NCAR CDC 7600 . 

TABLE III 

Comparison of Schemes for the Nonlinear Equation (7) with Solution (9) 

Scheme 
CPU 

J Error 01 E time NE 

Runge-Kutta 
Leapfrog 
Milne 
Imp. Runge-Kutta 
Lax-Wendroff 
Runge-Kutta 
Leapfrog 
Mihre 
Lax-Wendroff 
Runge-Kutta 
Leapfrog 
Milne 
Lax-Wendroff 

20 3.5E - 3 1.80 153 77 
20 5.5E - 3 1.20 - 178 89 
20 5.3E - 3 1.13 l.OE - 3 247 124 
20 3.5E - 3 1.20 l.OE - 3 565 275 
20 5.4E - 2 0.90 - 87 38 
9 6.9E - 2 1.80 34 37 

11 5.OE - 2 1.20 - 30 28 
10 7.1E - 2 1.13 0.01 63 63 
18 6.3E - 2 0.90 71 34 
17 6.9E - 3 1.80 - 112 65 
19 6.5E - 3 1.20 - 154 80 
18 6.5E - 3 1.13 0.001 234 127 

loo 6.6E - 3 0.90 - 21E+3 185 

0 Notation same as Table II. 
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of evaluations refers to the right side of the ordinary-differential equation obtained 
by the method of lines. Table II refers to the linear problem (6) with the multi- 
wavenumber solution (9). In this problem the leapfrog scheme still exhibits some 
cancellation between temporal and spatial truncation. We first compare the schemes 
by running all of them at the same resolution, J = 20. The value of 01 (i.e., dt) is 
chosen from the contour plots to yield the optimum approximation. Additional 
comparisons are obtained by using a value of J which yields (approximately) the 
relative error 0.06 and 0.006. This corresponds with an error in the phase angle of 
1 % and 0.1%. Tables II and III indicate that the implicit Runge-Kutta corrector 
is quite inefficient compared with the other schemes. Table III indicates that the 
Mime may not be as good as the Runge-Kutta or leapfrog although they are close 
enough so that this conclusion may be problem dependent. Use of the Milne 
corrector requires that the additional corrector convergence parameter E be 
determined, which is a disadvantage since the efficiency of the scheme is sensitive 
to this choice. 

The Lax-Wendroff scheme does very well on the linear problem of Table II. 
But this is due to cancellation of spatial and temporal truncation errors, and there- 
fore would not apply to nonlinear problems as Table III indicates. The leapfrog 
scheme also exhibits cancellation on this problem along with the Milne corrector. 
Therefore, this linear problem is a poor test case. We prefer to use Table III. 

For the nonlinear problem of Table III, the leapfrog scheme or the Runge- 
Kutta seem to be the best. The predictor-corrector schemes are not as efficient, 
and they also require adjustment of the convergence parameter E, which is a dis- 
advantage. These results are likely to be highly problem dependent. Also, we have 
not considered difficulties due to boundary conditions. However, the leapfrog and 
Runge-Kutta seem to be superior. As we might expect, the leapfrog, which is only 
secondorder accurate in time, tends to be best at lower resolution. The results are 
in agreement with those of Swartz. Although the publication [lo] does not include 
the simple spatial discretization which we used, he does have unpublished results 
using the same discretization which agree with ours. 

There are many excellent programs available for the integration of ordinary- 
differential equations. These programs set the time step dynamically in order to 
achieve a preassigned temporal error. We selected a Runge-Kutta-Fehlberg 
(RKF) routine as given in a paper by Enright et al. [5]. 

We are indebted to Jay Chalmers for coding this program from the listing given 
by Enright et al. The results obtained from this program applied to the nonlinear 
problem (7) are given in Table IV. We modified the program in order to set the 
initial time step equal to that determined by the input parameter (Y. The error 
tolerance E is given per unit step. This variable step method is apparently less 
efficient than the fixed time step Runge-Kutta. Its use seems to require about 
twice the computing for the same error for this particular problem. However, the 
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variable step method is probably more robust and also more convenient provided 
the choice of E is not troublesome. The results in Table IV show the dependence of 
the computational efficiency on the choice of E. 

TABLE IV 

Results using the Runge-Kutta-Fehlberg (RKF) Variable Step Method for the Nonlinear 
Equation (7) with Solution (9) 

J Error 
Initial 

(Y E 
CPU 
time NE 

20 4.1E - 3 
20 4.1E - 3 
20 5.3E - 3 
20 5.2E - 3 
11 4.5E - 2 
11 4.7E - 2 
11 4.6E - 2 
11 l.lE - 1 
11 5.1E - 2 
11 4.6E - 2 
18 6.6E - 3 

2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
2.0 
4.0 
4.0 
4.0 
3.0 

l.OE - 1 206 103 
5.OE - 3 207 103 
l.OE - 3 254 127 
5.OE - 4 293 145 
5.OE - 2 68 61 
l.OE - 2 67 61 
l.OE - 3 119 107 
5.OE - 2 64 58 
l.OE - 2 78 70 
1.OE - 3 124 112 
l.OE - 3 228 126 

D The initial LY is used to set both the initial and maximum step size. The B refers to the con- 
vergence tolerance used in the RKP routine (absolute error per unit step). The remaining para- 
meters are as in Table II. 

An ODE solver due to Shampine was also used. This program is based on a 
variable order, variable step Adam’s integrator. The results are given in Table V. 
The Adams integrator requires fewer functional evaluations for our test cases, as it 
does for most test cases [7]. The code we used allowed a maximum of 12th-order 
accuracy. This is more than we require and cost us 22 working storage locations for 
each unknown in the ordinary differential equation system. If we had reduced the 
maximum order to 6, then 14 locations would be required. If this order is reduced 
too much, then an underestimate of the error tolerance E can result in an expensive 
computation. The fourth-order Runge-Kutta-Fehlberg that we used requires 
six locations per unknown. 

This routine requires specification of both a relative and an absolute error toler- 
ance. We set the absolute tolerance to EU,,, where U, is the maximum norm of the 
solution. The first line of Table V indicates that the error tolerance E must be 
sufficiently small to avoid an unreasonably large error. On the other hand, a reduc- 
tion in E does not seem to increase the computational cost too much, although it will 
cause the scheme to run at a higher order which requires more storage. The anoma- 
lous behavior for J = 18 is probably due to an interaction between spatial and 
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temporal truncation error. We printed dt and the order used by this ODE solver 
at each step for J = 18 over integrations using different values of z. We could see 
nothing peculiar in the behavior of the integrator. The larger c (e = 0.001) allows 
the integrator to reach t, = 1.55 in nine time steps, whereas t, = 1.17 after nine 
steps with E = 0.0005. The error at t, corresponding to these two E values is 
0.014 and 0.0038. The larger E apparently allowed too large a step initially. The 
larger E produced a smaller At later which caused the number of evaluations to 
increase. The average order used in the Adams method after the first four steps 
was 5.0 with E = 0.001 and 4.3 with c = 0.0005. In the second case where the 
average order was 4.3, the order ranged from 3 to 6. 

TABLE V 
Results using the Variable Step Adams Method of Shampine for the Nonlinear Equation (7) 

with Solution (9) 

J Error 
Initial 

oi 
CPU 
time NE 

20 4.OE - 2 3.0 5.OE - 3 170 78 
20 4.9E - 3 3.0 l.OE - 3 195 89 
20 5.OE - 3 3.0 5.OE - 4 202 92 
11 5.3E - 2 3.0 S.OE - 3 58 47 
11 4.9E - 2 3.0 1.OE - 3 82 65 
18 9.4E - 3 3.0 l.OE - 3 185 93 
18 5.5E - 3 3.0 5.OE - 4 158 79 

D The initial a is used to set both the initial and maximum step size. The E refers to the con- 
vergence tolerance used in the RKF routine (relative error per unit step). The remaining para- 
meters are as in Table II. 

We ran one nonlinear test case which did not have a large source term. This is 
more typical of many problems, however as a consequence we do not have an 
exact solution for this case. We used a dimensionless form of the following shallow 
water equations 

Ut + uu, - gh, = 0 

Here H,, is a constant which represents a “mean” height. If the scaling factors 
Hl(g/H#12 and HI are used for u and h, then the equations reduce to the dimension- 
less form 

ut + ((42) u2 + h)m = 0 

ht + (~(1 + ah)), = 0 
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where 01 is the ratio CY = NJ&, ; that is, CY is the measure of the perturbation in 
h relative to the mean height Ho. We assume periodic boundary conditions on the 
interval 0 < x < 1, use the value 01 = 0.05, and the initial conditions 

24(x, 0) = h(x, 0) = sin 277x. 

If the value 01 = 0.1 is used, a shock seems to develop before t = 27~. If (y. = 0.05, 
the sine curve for u(x, t) is clearly distorted at t = 277, but seems to remain con- 
tinuous. In Table VI the result of solving this system with the Adam’s integrator of 
Shampine is shown. Several values of h = dx/2 = l/J are used and the solution is 
checked at three mesh points. The maximum values of u and h for t = 271 occur 
near x = 0.32 x 27~. 

TABLE VI 

x = 0.3 x 2a 

ho = I/250 

h, = l/140 

ha = l/80 

h, = l/40 

ha = l/20 

hS = l/10 

x = 0.4 x 2r 

h, 

he 

h, 

ha 

h, 

x = 0.6 x 2n 

h 

h, 

ha 

h 

h, 

- 
6.E - 7 

5.5E - 6 

2.64E - 4 

4.13E - 4 

1.4E - 1 

9.4E - 6 

9.66E - 5 

2.56E - 3 

2.32E - 2 

-1.5E - 1 

8.9E - 6 

9.49E - 5 

1.62E - 3 

1.83E - 2 

7.7E - 2 

- 
- 

9.2 

48. 

1.6 

340. 

- - 
10.3 10.3 

26. 16.2 

9.1 16.0 

-64. 16.0 

- - 
10.7 10.3 

17.1 16.2 

11.3 16.0 

4. 16.0 

- -1.57E - 4 l.E - 8 

- -1.54E - 4 l.E - 7 

10.3 -1.21E - 4 l.E - 6 

16.2 4.15E - 4 l.E - 5 

16.0 8.02E - 3 5.E - 4 

16.0 6.18E - 2 5.E - 4 

D Adams ODE integrator used with E = error tolerance. 

58112212-2 
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The system of Eqs. (17) has the following “energy” invariant 

s 02v [c&(x, t)2 + h(x, t)2) + (2 + a2u(u, t)2) h(x, t)] dx = E(t) = E. 

This integral is approximated by the trapezoid rule. Because of the periodic 
boundary conditions the trapezoid rule shows the same error as an approximation 
of the solution by a finite Fourier series taken over the mesh points [l 11. Therefore 
use of the trapezoid rule should introduce less error than the difference approxima- 
tion. We use the method of lines with fourth-order spatial differences to compute 
an approximate solution V(x, h) (we drop t since all the results are at t = 27r). If 
we assume an asymptotic error expansion and drop the higher-order terms we have 

A comparison of the two sides of this equation is given in Table VI for the indicated 
mesh points x and the mesh spacing h, . Agreement seems to be good only for the 
last three values of h. The computation is too expensive to permit smaller values of 
h. The error is much smaller at x = 0.3 x 2~ for some reason. 

Extrapolation to the limit using 

W, 0) GE W, 4 - (W, h,) - Wx, h,NlWdh)* - 1) 
yields an error around 10-sfor h = l/250 at x = 0.4 x 2~r. We have E(h, 0) = (Y = 
0.05, and thus we might expect a relative error in E(h, 27r) around 2 x 10-5. The 
actual error shown in Table VI is much larger and E(h, 27~) does not appear to 
converge to zero with h. We have no explanation for this. The scheme does seem 
to converge pointwise. It is natural to suspect a programming error. However, we 
have run the integration of (17) on two independent programs. The program has 
been checked out on simple problems such as ut = u, + Xs - 3x2(1 + t) with 
the solution u(x, t) = (1 + t)x3 for which the solution of the difference equation is 
exact (the code allows nonperiodic boundary conditions although we have not 
discussed that here). We checked the trapezoid rule on the integral of exp(sin(2rrx)) 
over one period. We perturbed the calculation to check its sensitivity to rounding 
error. But we have no explanation for the failure of this energy check. 

In Table VII we show a comparison of the three ODE methods for the system 
(17). The error is estimated by assuming that the solution at h = l/140 is exact. 
The results for the leapfrog show some error cancellation at J = 10. The Adams 
method requires fewer functional evaluations than the Runge-Kutta, but more 
CPU time. The right side of the equation is apparently too simple to cover the 
overhead in the Adams scheme. We made no effort to program this efficiently, 
however the Adams and Runge-Kutta-Fehlberg codes should suffer equally from 
any inefficiency in our program. The leapfrog scheme appears to be superior for 
this problem even if it is run at h = 0.4 at J = 10 and h = 0.2 at J = 20. 
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TABLE VII 

Estimated Error for Shallow Water Equations at t = 1.0 with (Y = 0.05” 

Error at 
x = 0.3 x 2n 

Error at 
x = 0.4 x 21 

Energy 
check 

Number CPU 
of Eva1 time 

E = l.E - 2 

E= l.E-3 

l =l.E-4 

1.5OE - 1 -1.95E - 1 

1.43E - 1 -1.5OE - 1 

1.41E - 1 -1.49E - 1 

J = 10, Adams method 

1.12E - 1 34 0.55 

6.3OE - 2 56 0.97 

6.16E - 2 67 1.35 

E=I.E-2 

E = 5.E - 3 

l = 5.E - 4 

E = 5.E - 5 

4.13E - 2 3.26E - 3 

1.56E - 2 1.87E - 2 

-3.OOE - 3 2.59E - 2 

3.1E - 5 2.25E - 2 

J = 20, Adams method 

2.16E - 2 61 1.75 
1.27E - 2 69 2.03 

8.02E - 3 82 2.62 
7.63E - 3 101 3.23 

r=l.E-2 1.41E - 1 -1.52E - 1 6.5OE - 2 66 0.66 
c= l.E-3 1.4OE - 1 -1.49E - 1 6.16E - 2 120 1.27 
e=l.E-4 1.4OE - 1 -1.49E - 1 6.14E - 2 204 2.15 

J = 10, Runge-Kutta-Fehlberg 

c = l.E - 2 

s = 5.E - 3 

E = 5.E - 4 

E = 5.E - 5 

6.54E - 3 2.06E - 2 l.OOE - 2 

2.83E - 3 2.19E - 2 8.76E - E 

4.82E - 4 2.23E - 2 7.71E - 3 

4.01E - 4 2.22E - 2 7.64E - 3 

J = 20, RungeKutta-Fehlberg 

78 1.43 

96 1.80 

174 3.27 

306 5.66 

h = 0.6 

h = 0.4 

A = 0.2 

x = 0.1 

4.39E - 2 1.64E - 1 3.43E - 2 

1.42E - 1 -2.lOE - 2 5.22E - 2 

1.44E - 1 -1.19E - 1 5.96E - 2 

1.42E - 1 -1.42E - 1 6.1OE - 2 

.I = 10, Leapfrog 

21 0.12 

29 0.17 

54 0.36 

104 0.72 

X = 0.6 

A = 0.4 

h = 0.2 

h = 0.1 

3.68E - 2 3.69E - 2 -1.25E - 2 

-2.91E - 2 4.58E - 2 -6.44E - 4 

-7.33E - 3 2.94E - 2 5.71E - 3 

-1.53E - 3 2.41E - 2 7.17E - 3 

J = 20, Leapfrog 

38 0.42 

54 0.63 

104 1.38 

204 2.59 

a Here A = At/Ax and < is the convergence tolerance. Estimated error = U(x, h,,) - U(x, h,), 
where hl = l/140 and ho = l/10 or l/20 (see Table VI). The CPU time is seconds on a CDC 6400. 
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Equations (17) were also run with different initial conditions intended to include 
higher frequencies in the solution. These are 

u(x, 0) = h(x, 0) = exp(sin(2+ - t))). 

The solution for this case is highly distorted at t = l., however it appears to be 
continuous. The results are shown in Table VIII. The leapfrog appears to be supe- 
rior in this case. 

TABLE VIII 

Estimated Error for Shallow Water Equations at I = 1.0 with N = 0.05 
and 4(x, 0) = h(x, 0) = exp(sin(2+ - t))>” 

Error at Error at Energy Number CPU 
x =0.4x2rr x=0..5x2rr check of Eva1 time 

Q = l.E-2 
B = 5.E- 3 
l = 5.E - 4 

0.321 -0.362 6.2E - 4 
0.214 -0.322 5.6E - 4 
0.204 -0.314 3.4E - 4 

J = 20, Adams method 

E= l.E-2 
E = 5.E - 3 
E = 5.E - 4 

0.335 -0.315 3.3E - 4 
0.202 -0.314 3.1E - 4 
0.201 -0.313 2.9E - 4 

J = 20, Runge-Kutta-Fehlberg 

h = 0.6 0.013 
x = 0.4 0.126 
h = 0.2 0.211 
x = 0.1 0.196 

-0.059 1.9E - 4 
-0.187 2.1E - 4 
-0.261 2.6E - 4 
-0.301 2.8E - 4 

J = 20, Leapfrog 

67 1.9 
84 2.5 
105 3.2 

150 2.8 
186 3.3 
318 5.8 

54 0.6 
71 0.8 

104 1.2 
204 2.4 

LI Estimated error = u(x, h,) - u(x, h,) where h, = l/SO. The CPU time is seconds on a 
CDC 6400. 

These results indicate that the fixed time-step leapfrog scheme may be best if 
the differential equation is simple. Otherwise the Adams method may be best, 
since it tends to minimize the number of functional evaluations of the time deriva- 
tive. We are currently testing a program package for “hyperbolic” type systems in 
two dimensions coupled with a single elliptic equation. This package will allow a 
choice between the leapfrog and Runge-Kutta-Fehlberg schemes. We hope to add 
the Adams code to the package, but this requires some rewriting since we allow the 
data to be contained in LCM(ECS) on the CDC 7600 (6600). For this package the 
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maximum order should probably be specified by the user (or by default). Also, the 
fact that we are in two space dimensions may allow the storage requirements to be 
reduced by keeping some temporary arrays only along a one-dimensional line 
instead of over the two-dimensional mesh. 
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